
A

879

A P P E N D I X A

DEBUGGING
After completing this appendix, you will be able to:

Describe the types of programming errors

Trace statement execution

Set breakpoints in code

Use the Immediate window to evaluate expressions

Add watch expressions

Trace cascading events with the Call Stack window

Use the Locals window

»

1418835463_AppendixA.qxd 5/22/06 02:31 PM Page 879

880

D E B U G G I N G

DEBUGGING APPLICATIONS
This appendix describes how to use the Visual Studio debugging tools. In any application
that you create, you will likely make mistakes. Finding those mistakes and being able to
effectively correct them is an important part of the development process. This appendix
discusses numerous techniques to help you locate and fix common programming errors.

TYPES OF PROGRAMMING ERRORS
Any error that causes an application to end abnormally or to produce unexpected results
is considered a programming error. The process of locating and fixing programming
errors in an application is called debugging. Visual Studio supports numerous built-in
tools that help you to debug the applications that you create.

Many developers feel that debugging an application is part science and part art. The sci-
ence involves being able to use the Visual Studio debugging tools effectively. These tools
include windows that allow you to watch statements as they execute, to examine the cur-
rent value of variables, and to use the commands that execute statements one at a time.
The art involves deciding where to search for the exact cause of an error and choosing
which Visual Studio tools to use to find the error.

Programming errors can be categorized into three different types: syntax errors, run-
time errors, and logic errors, which are discussed in the following sections.

SYNTAX ERRORS
As each statement of an application is entered into the Code Editor, the Visual Basic com-
piler examines the statement for syntax errors (violations of the rules of a programming
language) as the insertion point is moved from one statement to the next. A syntax error
occurs when the Visual Basic compiler cannot understand a statement that you have writ-
ten. If an application has syntax errors, the application cannot be compiled or executed.

You can find syntax errors in two ways:

» The Visual Basic compiler underlines syntax errors with a ragged blue line in the
Code Editor.

» Syntax errors are listed in the Error List window.

»NOTE
A common term used
to describe any kind of
programming error is “a
bug.”

1418835463_AppendixA.qxd 5/22/06 02:31 PM Page 880

881

A P P E N D I X A

Figure A-1 shows the Code Editor and Error List windows displaying various syntax
errors.

Syntax errors
appear underlined
in the Code Editor

Syntax errors
appear in the

Error List window

Figure A-1: Syntax errors appearing in the Code Editor and Error List windows

As shown in Figure A-1, three syntax errors appear in the Code Editor with ragged under-
lines. The same syntax errors appear in the Error List window. The columns appearing
in the Error List window provide the following information:

» The first column displays an icon showing the severity of the error. In Figure A-1,
all three errors are critical and prevent the application from compiling.

» The second column shows the error number. Errors are numbered sequentially.

» The third column contains a description of the syntax error.

» The fourth column displays the name of the file that contains the syntax error.

» The fifth and sixth columns display the line and column position where the error
was detected.

» The final column displays the project where the error appeared.

»NOTE
The Error List window
also displays warning
errors. For example, if
you declare a variable
but do not use that vari-
able, a warning error
appears in the Error List
window. Warning errors
do not prevent an appli-
cation from compiling.

1418835463_AppendixA.qxd 5/22/06 02:31 PM Page 881

882

D E B U G G I N G

In this exploration exercise, you will use the Code Editor and Error List windows to
locate and correct syntax errors.

1. Start Visual Studio, if necessary, and open the solution appearing in the folder named
Appendix.A\AppendixAConceptLesson.

2. Activate the Code Editor for the form named frmMain.

3. Activate the Error List window by clicking View, Error List on the menu bar. By
default, the Error List window is docked along the bottom of the Visual Studio IDE.

4. Expand the Syntax Errors region, if necessary. At the beginning of the module, mod-
ify the statement that reads Private Count1 As Integer so that it reads Pirvite
Count1 As Integer (misspelling the keyword Private).

5. Move the insertion point to the next line so that Visual Studio checks the syntax of
the statement you just modified. In the Code Editor, the statement with the incorrect
syntax appears underlined. In addition, a message appears in the Error List window
with the description “Declaration expected.” indicating that only declaration state-
ments can appear at the module level.

6. Correct the error by spelling the keyword Private correctly, and then move the inser-
tion point to the next line. The syntax of the statement is checked. Because the syntax
of the statement is correct, the error is removed from both the Code Editor and the
Error List window.

RUN-TIME ERRORS
Unlike syntax errors, run-time errors are not detected by the Visual Basic compiler when
the application is compiled. Rather, these errors occur as an application executes and an
exception is thrown.

Chapter 7 describes exceptions and how to handle them. Exceptions can be thrown for
many reasons, such as the following:

» Trying to store data of an incompatible data type in a property or variable

» Calling functions with arguments having invalid data

» Trying to store too large or too small a value into a variable (numeric overflow)

» Trying to reference an object before creating an instance of the class with the New
keyword

If a statement that is not enclosed in an exception handler executes and causes an excep-
tion to be thrown, a run-time error occurs. When an exception is thrown, Visual Studio
displays a message box to help explain the cause of the exception and to help you locate
the statement that caused the exception. Figure A-2 shows an unhandled exception
appearing in a dialog box.

»TIP
Syntax errors can cas-
cade. That is, one syntax
error can cause Visual
Studio to identify addi-
tional syntax errors.
Thus, when an applica-
tion contains multiple
syntax errors, fix the first
syntax error in the list
first, as it might be the
cause of subsequent
syntax errors.

1418835463_AppendixA.qxd 5/22/06 02:31 PM Page 882

883

A P P E N D I X A

As shown in Figure A-2, the dialog box shows the exception type, which, in this case, is a
System.FormatException. It means that Visual Studio executed a statement but
could not convert the textual input data to a numeric value. The dialog box displays a
descriptive message, along with tips to solve the problem.

»NOTE In some cases, the statement that caused an exception might be only a symptom of the
underlying problem. Instead, the exception might be thrown at a later point during the execution of the program.
In such cases, you might want to examine the statements that lead up to an exception, even though these
statements themselves are not directly responsible for the exception.

Exceptions can be thrown when an application is running and are often caused by type
mismatch errors and numeric overflow and underflow errors. These errors are discussed
in the following sections.

TYPE MISMATCH AND FORMATEXCEPTION ERRORS
Calling a method of the System.Convert class with incorrect data causes an exception
to be thrown. For example, a FormatException is thrown if a string cannot be con-
verted to a numeric value, as shown in the following code segment:

Dim StringDemo As String = "$1234.56"

Dim DoubleDemo As Double = _

System.Convert.ToDouble(StringDemo)

The second of the preceding statements causes a FormatException to be thrown
because the value stored in the variable StringDemo cannot be converted to the Double
data type.

This type of error can be corrected in two ways. First, you can write code to validate the
contents of a string variable or text box using the IsNumeric and IsDate functions.
Second, any statements that might cause a type mismatch error or format error can be
enclosed in a structured exception handler.

Suggestions to
correct exception

Exception type is
FormatException

Exception
description

Figure A-2: Unhandled exception message

1418835463_AppendixA.qxd 5/22/06 02:31 PM Page 883

884

D E B U G G I N G

NUMERIC OVERFLOW ERRORS
Numeric overflow exceptions are caused by executing statements that attempt to store a
value that is too large or too small into a variable having an integral data type. The Long,
Integer, and Short data types are all subject to numeric overflow errors. For example,
the largest value that can be stored in the Short data type is 32,767. Trying to store a
value larger than that causes an exception to be thrown. The same problem occurs when
an attempt is made to store too large a negative value in a variable. For example, the
Short data type cannot store a negative value beyond –32,768.

Numeric overflow and underflow errors are resolved by creating structured exception
handlers. In this exploration exercise, you will examine how execution of a statement
can cause an exception to be thrown.

1. Run the solution for this appendix. By default, the Run-Time Errors tab should be
active. Figure A-3 shows the Run-Time Errors tab.

»NOTE
When performing arith-
metic operations on
floating-point numbers,
Visual Studio does not
raise an exception in
the case of numeric
overflow. Rather, Visual
Studio stores a special
value (not a number) in
the variable.

Figure A-3: Concept lesson—Run-Time Errors tab

1418835463_AppendixA.qxd 5/22/06 02:31 PM Page 884

885

A P P E N D I X A

2. Enter the value .25A for the interest rate, 15000A for the period, and 10000A for the
amount. Each of these values is invalid and causes an exception to be thrown when
the executing statement tries to convert the invalid value to a numeric data type.

3. Click the Type Mismatch button. A dialog box opens describing the error. The error
is categorized as a System.FormatException error because the value of an argu-
ment is not valid. The statement causing the exception is also highlighted in the Code
Editor.

4. End the program and run it again. Enter the same invalid input into the text boxes.
Click the Type Mismatch (Handled) button. This time, an exception handler
appears in the event handler. This exception handler displays a message box describ-
ing the nature of the error. Click OK to close the message box.

5. Click the Numeric Overflow button. A multiplication operation is performed caus-
ing a System.OverflowException to be thrown.

6. End the program and run it again. Reenter the invalid values from Step 2. Click the
Numeric Overflow (Handled) button. The same multiplication operation is performed,
but this time, the statement that causes the exception is enclosed in an exception han-
dler. The statement in the exception handler displays a message box to the end user.

7. End the application.

LOGIC ERRORS
A logic error occurs when an application does not perform as it is expected to perform,
but instead produces incorrect results. In such a situation, logic errors will surface
while an application is running. For example, if you intended to compute the area of a
rectangle, you would multiply the length of the rectangle by its width. If you added the
numbers instead of multiplying them, the application would produce an incorrect
answer, and a logic error would have been created. The Visual Studio debugging tools
cannot solve logic errors directly. That is, the debugging tools cannot tell you that a
statement contains a logic error. Rather, you must use the debugging tools to locate and
correct any logic errors that you yourself create.

»NOTE The distinction between logic and run-time errors is sometimes unclear to those new to
programming. For example, a logic error would occur if you added two values together instead of multiplying
them. If this error causes a numeric overflow exception to be thrown, the logic error would, in turn, cause a
run-time error.

For example, if you called the PMT method with incorrect argument values, the method
call might cause an exception to be thrown. You would first need to determine which
argument was incorrect, and then locate the statement that set the value of the erroneous
argument.

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 885

886

D E B U G G I N G

INTRODUCING THE VISUAL
STUDIO DEBUGGING TOOLS

Visual Studio’s debugging tools consist of commands that allow you to temporarily
suspend the execution of an application by entering break mode. You can then trace the
execution of statements and procedures as they are called by Visual Studio. Statements
can be executed line-by-line with Visual Studio suspending execution as each statement
executes. It is also possible to suspend execution just before executing a specific state-
ment or when the value of a variable or a property’s value changes.

“Stepping through the statements” in an application means that the Visual Studio
run-time system executes each statement in a procedure line-by-line, highlighting
each statement just before executing it. As you step through the statements in an
application, you typically examine the variables and object properties to locate the
cause of logic or run-time errors.

The Visual Studio debugging tools are made up of several windows that are used together
to find errors in an application and to subsequently correct them. These windows are
collectively referred to as debugging windows. The following list identifies selected
debugging windows that are discussed in this appendix. These debugging windows are
all tool windows and can be docked or Auto Hidden along an edge of the IDE. The debug-
ging tool windows can also appear as floating windows.

» The Breakpoints window is used to define the locations (executable statements) in
an application where Visual Studio will suspend execution. After execution is sus-
pended, it is common to examine the values of variables so as to determine the
cause of a particular error. In addition, the Code Editor and the buttons on the
Debug toolbar can be used to execute statements one at a time.

» In the Immediate window, expressions can be entered that display the values of
variables and object properties. It is also possible to call procedures using the
Immediate window.

» Watch windows are used to examine the values of expressions.

» The Call Stack window is used to examine the procedures that have been called
and the order in which those procedures have been called.

» The Locals window is used to examine the values of local variables, or for example,
the properties of a form, its control instances, and the variables declared in the
form.

»TIP When debugging an application, you will likely have several windows open simultaneously, which
might cause windows to obscure one another. Consider Auto Hiding the debugging windows along the bottom
of the IDE. To Auto Hide a window, dock the window along an edge of the IDE. Right-click the window’s title bar,
and then click Auto Hide.

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 886

887

A P P E N D I X A

TRACING EXECUTION AND SETTING BREAKPOINTS
WITH THE BREAKPOINTS WINDOW
Often, the applications you create contain logic errors. That is, the application produces
incorrect results but does not cause any exceptions to be thrown. When an application
produces incorrect results, but the reason is not clear, it might prove helpful to step
through the statements; that is, it might be helpful to follow the execution of each
statement line-by-line until the problem is found. It might also be helpful to execute
statements line-by-line to help determine why an exception is thrown.

The following list describes the toolbar buttons used to step through statements as Visual
Studio executes them.

» Visual Studio executes one statement, and then enters break mode when the Step
Into button is clicked. The Step Into button traces execution as procedures are
called and as they complete. If a statement is a procedure call, the statements in
the called procedure are executed line-by-line.

» The Step Over button works similarly to the Step Into button. If the statement is a
procedure call, however, Visual Studio executes all of the statements in the proce-
dure, and then enters break mode just before executing the statement following
the procedure call.

» The Step Out button works similarly to the Step Over button. When clicked, Visual
Studio executes all of the remaining statements in the current procedure, and then
enters break mode at the statement following the statement that called the procedure.

In this exploration exercise, you will trace the execution of statements line-by-line using
the Step Into button. The Click event handler for this button contains the following
code to determine whether a number is even or odd:

Dim Count As Integer

For Count = 1 To 10

txtLog.Text &= CrLf & "Count=" & Count.ToString()

Select Case Count

Case 1, 3, 5, 7, 9

txtLog.Text &= CrLf & "Count is odd"

Case 2, 4, 6, 8, 10

txtLog.Text &= CrLf & "Count is even"

End Select

Next

1. Click View, Toolbars, Debug, if necessary, to display the Debug toolbar. Click the
Step Into button or press F11 to begin executing the application.

2. Click the Step Through Execution tab. Click the Single Step button on the form.
The Code Editor appears and the procedure declaration appears highlighted in
yellow, indicating that the procedure is about to execute.

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 887

888

D E B U G G I N G

3. Press F11 several times to execute each statement line-by-line. Pay particular atten-
tion to the fact that the statement that will execute next is highlighted in the Code
Editor. Watch the statements in the loop as they execute. Furthermore, watch when
the different Case blocks execute depending on whether the value of the variable
Count is even or odd. Figure A-4 shows the Code Editor while single stepping
through an application. Note that the Output Log text box on the main form shows
the results of statements as they execute.

The next statement
to execute appears

highlighted

Figure A-4: Line-by-line statement execution in the Code Editor

4. As you watch the statements execute, highlight the variable Count by moving the
cursor over the variable. Note that the value of the variable appears in a ToolTip.

5. Press F5 or click the Step Out button. The process of single stepping ends and
execution continues as normal.

6. End the application.

Clicking the Step Into button causes Visual Studio to step through the statements in a pro-
cedure. If a statement is a procedure call, Visual Studio single steps into the procedure,
and then continues executing the statements in that procedure one statement at a time.

In addition to stepping through every statement in every procedure in an application, it
is possible to step through parts of an application or pause the application (enter break

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 888

889

A P P E N D I X A

mode), and then continue executing statements one at a time. When debugging a proce-
dure that calls other procedures, for instance, it is not necessary to trace through the
statements in a called procedure after it is known to work correctly. Instead, the Step
Over button can be used to execute all of the statements in a procedure, and then suspend
execution at the statement following the one that called the procedure. Furthermore,
execution can be suspended at any time by clicking the Break All button while the appli-
cation is running.

TYPES OF BREAKPOINTS
When you suspect that a problem is occurring in a particular procedure or that a particu-
lar statement is incorrect, it is possible to suspend execution at any executable statement
by setting a breakpoint. A breakpoint is an executable statement where Visual Studio sus-
pends execution and enters break mode, just before executing the marked statement.

Breakpoints are one of the most common and easy to use of the Visual Studio debugging
tools. Breakpoints can be created and deleted as needed so as to examine the values of
variables at a particular point in an application’s execution. Visual Studio supports differ-
ent types of breakpoints. In this appendix, you will examine a type of breakpoint called a
file breakpoint. A file breakpoint is an executable statement in an application where exe-
cution will be suspended.

Visual Studio lists the current breakpoints in a project in different ways. First, an icon
appears in the left margin of the Code Editor to indicate that a breakpoint is set. In addi-
tion, a list of breakpoints appears in another window called the Breakpoints window.
Figure A-5 shows the Code Editor and Breakpoints window with two breakpoints set.

»TIP
While debugging an
application, it is often
useful to enter break
mode, and then step
through each statement
that you suspect is in
error. When a procedure
appears to work correctly,
you can step over it and
move on to the next
statement. This is where
setting breakpoints
comes into play.

»NOTE
Breakpoints cannot be
set on declaration
statements because
they are not executable
statements.

Enabled
breakpoint

Disabled
breakpoint

Figure A-5: Breakpoints appearing in the Code Editor and the Breakpoints window

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 889

890

D E B U G G I N G

Note the following about the breakpoints appearing in Figure A-5:

» A filled circle denotes an enabled breakpoint. Visual Studio suspends execution
just before executing the statement containing the enabled breakpoint. If the
breakpoint is set on a procedure declaration, execution is suspended just before
executing the first statement in the procedure. Note that the breakpoints appear in
both the Breakpoints window and the Code Editor.

» An outlined circle indicates that a breakpoint is disabled. Breakpoints are enabled
and disabled by right-clicking the breakpoint in the Code Editor, and then clicking
Disable Breakpoint or Enable Breakpoint from the pop-up menu. Visual Studio
does not suspend execution on breakpoints that are disabled.

CREATING A BREAKPOINT
A breakpoint can be created in one of two ways. First, you can locate an executable state-
ment in the Code Editor, and then click in the left margin. A filled circle appears in the
margin indicating that a breakpoint is set and enabled. Using the second technique, right-
click an executable statement in the Code Editor, and then click Breakpoint, Insert
Breakpoint from the pop-up menu.

To remove a breakpoint, right-click the statement in the Code Editor containing the
breakpoint, and then click Breakpoint, Delete Breakpoint from the pop-up menu. It is
also possible to remove a breakpoint by selecting the breakpoint in the Breakpoints
window, and then clicking the Delete button. Clicking Debug, Delete All Breakpoints
removes all of the breakpoints in an application. A breakpoint can also be removed by
clicking the filled circle in the Code Editor.

In addition to setting simple breakpoints that suspend execution just before a statement
executes, it is possible to set hit count breakpoints and conditional breakpoints, as follows:

» A hit count breakpoint causes execution to be suspended after the statement con-
taining the breakpoint has executed a certain number of times. For example, a hit
count breakpoint is often useful with a For loop. After the statement(s) in the loop
has executed some number of times, Visual Studio suspends execution. The dialog
box shown in Figure A-6 is used to set a hit count breakpoint.

»NOTE
It’s possible to create as
many breakpoints as you
need. In addition, break-
points are persistent from
one invocation of Visual
Studio to the next. That is,
if breakpoints exist and
you exit Visual Studio,
those breakpoints will
continue to exist the next
time the application is
loaded into Visual Studio.

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 890

891

A P P E N D I X A

As shown in Figure A-6, a list box is used to define how the hit count breakpoint
will operate. In Figure A-6, execution will be suspended every 1000 times the
statement executes.

» A conditional breakpoint, as its name implies, suspends execution when some con-
dition is met. The condition in a conditional breakpoint has the same syntax as the
condition in an If statement. The dialog box shown in Figure A-7 is used to set
a conditional breakpoint.

Figure A-6: Breakpoint Hit Count dialog box

Figure A-7: Breakpoint Condition dialog box

As shown in Figure A-7, the Breakpoint Condition dialog box contains a text box in
which a condition is entered. The Is true radio button, when selected, causes exe-
cution to be suspended when the condition is true. The Has changed radio button,

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 891

892

D E B U G G I N G

when selected, causes execution to be suspended when the value of the condition
changes. Using the breakpoint shown in Figure A-7, execution will be suspended
when the variable Count is equal to 1000.

In this exploration exercise, you will see how to set breakpoints and use breakpoints to
trace the execution of program statements.

1. Activate the Code Editor for the form named frmMain. Locate the procedure named
btnSimpleBreakpoint_Click. Set breakpoints on the following statements (shown
in bold):

Case 1, 3, 5, 7, 9

txtLog.Text &= CrLf & "Count is odd"
Case 2, 4, 6, 8, 10

txtLog.Text &= CrLf & "Count is even"

2. Run the application. Click the Breakpoints tab. Click the Simple Breakpoint
button. When the breakpoint is reached, the Code Editor appears and the statement
that will be executed next is highlighted. While in break mode, highlight the variable
named Count and the Text property of the text box named txtLog. As you do, the
value of the variable and object property appears in a ToolTip.

3. Press F5 to continue execution. Execution continues until the next breakpoint is hit.

4. Remove the two breakpoints and end the application.

5. Next, activate the Code Editor, and locate the Click event handler for the button
named btnHitCountBreakPoint. Set a breakpoint on the following line:

Do Until Count > 10000000

6. In the Code Editor, right-click the breakpoint, and click Hit Count from the shortcut
menu.

7. In the Breakpoint Hit Count dialog box that opens, select Break when the hit count
is a multiple of from the drop-down list, and then enter 100 in the text box. Click OK
to close the dialog box.

8. Run the application. Click the Breakpoints tab. Click the Hit Count Breakpoint
button. The breakpoint is activated every 100 iterations. To see this, move the cursor
over the variable Count in the Code Editor. Note that its value is 99. The value of the
breakpoint will be 199, 299, and so on when the breakpoint is subsequently hit. Thus,
the breakpoint is hit every 100 iterations.

9. Remove the breakpoint and end the application.

»NOTE
Hit count breakpoints are
not available in the Visual
Basic Express edition.

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 892

893

A P P E N D I X A

USING THE IMMEDIATE WINDOW
The Immediate window is used to examine the values of variables, change those values,
and call procedures. Typing a question mark (?) followed by an expression causes Visual
Studio to evaluate that expression and display the result on the line following the expres-
sion. The expression following the question mark can be a variable, object property,
or any other expression that is valid on the right side of an assignment statement.
Expressions containing variables or object properties are valid only in break mode
because variables only have values while a Visual Studio program is running. It is also
possible to set the value of a variable or object property using an assignment statement.
Figure A-8 shows the Immediate window with various expressions.

Figure A-8: Immediate window

As shown in Figure A-8, expressions are entered in the Immediate window by entering a
question mark (?) followed by the expression name. The expression is evaluated, and the
result is then displayed.

In this exploration exercise, you will see how to use the Immediate window to examine
the value of variables and object properties.

1. Activate the Code Editor, and locate the Click event handler for the button named
btnImmediateWindow. Set a breakpoint on the following line:

txtSquared.Text = Squared.ToString

2. Run the application, and click the Breakpoints tab. Enter the value 42 in the Enter a
Number text box. Click the Immediate Window button. The breakpoint you speci-
fied in the previous step is hit and execution is suspended. Again, the statement is
highlighted in the Code Editor.

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 893

894

D E B U G G I N G

3. View the Immediate window by clicking Debug, Windows, Immediate.

4. Enter the following statement in the Immediate window, and then press Enter:
?Input

The value of the variable 42.0 appears in the Immediate window. This is the value
stored in the variable Input.

5. Enter the following statement in the Immediate window, and then press Enter:
?Squared

The value of the variable (1764.0) appears in the Immediate window.

6. Enter the following statement in the Immediate window, and then press Enter:
?txtSquared.Text

An empty string is displayed because a value has yet to be stored in this control
instance.

7. Clear the breakpoint and end the application.

SETTING WATCH EXPRESSIONS WITH THE WATCH
WINDOWS
To examine the value of the same variable repeatedly, you can use watch expressions.
Watch expressions provide a useful alternative to entering the same expression again and
again in the Immediate window. Each time Visual Studio enters break mode, the values
of watch expressions appear in one of four Watch windows. Watch expressions can be
created, changed, or deleted while a project is in break mode. Like breakpoints, watch
expressions are persistent from one invocation of Visual Studio to the next.

To add a watch expression to a project, one of four Watch windows is used. Each
Watch window works exactly the same way. Visual Studio supplies four Watch win-
dows so that you can organize the variables or expressions that you want to watch into
functional or logical groupings. The contents of Watch windows can only be edited
while Visual Studio is in break mode. Figure A-9 shows the first Watch window with
four watch expressions.

»NOTE
Equivalent results can be
obtained by highlighting
a variable in the Code
Editor or entering a com-
parable expression in the
Immediate window. Both
display the value of a
variable. Which tech-
nique to use is a matter
of personal preference.

Four watch
expressions

Figure A-9: Watch window

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 894

895

A P P E N D I X A

As shown in Figure A-9, you can watch a variable, or create more complex expressions
such as Count > 10. Furthermore, it is possible to examine the properties of control
instances such as a list box.

Each of the four Watch windows contains the following three columns:

» In the Name column, you enter the expression that you want Visual Studio to eval-
uate. To avoid typographical errors, you can copy the expression or variable from
the Code Editor to a Watch window by means of the Windows Clipboard. The
watch expression can consist of a variable, object, property, or more complex
expressions.

» The Value column contains the current value of the watch expression.

» The Type column contains the data type of the watch expression.

A watch expression can be created, edited, or deleted only when Visual Studio is in break
mode. To edit a watch expression, click on the expression to be edited in the desired
Watch window, and then change the expression, as necessary.

In this exploration exercise, you will see how to work with a Watch window to examine
expressions as an application executes.

1. Activate the Code Editor and select the Click event handler for the button named
btnWatch, which is located in the Watch Windows region. Set a breakpoint on the
following line:

lstNumbers.Items.Add(Count.ToString)

2. Run the application. Click the Watch Windows tab. Click the Watch button to exe-
cute the event handler for which you set a breakpoint in the previous step. Execution
is suspended at the breakpoint you just created.

3. Click Debug on the menu bar, point to Windows, point to Watch, and then click
Watch 1 to display the first Watch window. Note that the Visual Basic Express
edition has only one Watch window named Watch.

4. Type Count in the first row of the Name column.

5. Type Total in the second row of the Name column.

6. Type Count > 10 in the third row of the Name column.

7. Press F11 several times. Each time the value of one of the watched variables changes, the
value is updated in the Watch window. Clear the breakpoint and end the application.

THE CALL STACK WINDOW
The Call Stack window allows you to view which event handlers or other procedures
have been called and the order in which those procedures were called. One use of the
Call Stack window is to detect a phenomenon called cascading events. Cascading events
and the Call Stack window are discussed in the following sections.

»TIP
Use care when creating
watch expressions.
Visual Studio must check
and evaluate each watch
expression every time a
statement executes.
Thus, if you create too
many watch expressions
at once, program execu-
tion becomes very slow.

»NOTE
Although not a Visual
Studio debugging tool, a
message box can be used
to display the value of a
variable or object prop-
erty. It’s also possible to
call the Console.
WriteLine and
Debug.WriteLine
methods. Of course, when
the application is known
to be working correctly,
this code must be
removed.

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 895

896

D E B U G G I N G

CASCADING EVENTS
In event-driven applications, improper logic can cause one event to raise another event
indefinitely. Such a problem can arise when a statement fires a TextChanged event for
one control instance. That control instance, in turn, fires a TextChanged event in a sec-
ond control instance, and so on. If a control instance down the line fires a TextChanged
event for the first control instance, the execution path becomes circular; that is, the
events continue firing each other indefinitely. This phenomenon is called cascading
events.

Consider a simple example involving two text boxes. After each text box gets input focus,
it sets the focus to the other text box, and focus switches back and forth between the two
text boxes indefinitely. The application seems to “lock up,” and you cannot click any
other control instance on the form while the text boxes continue updating one another.
Whenever an application seems to lock up because of cascading events, it’s possible to
press the Break All button on the Debug toolbar, and then check the relationship
between the events in the program.

VIEWING THE CALL STACK WINDOW
The Call Stack window lists both the procedures you create and those procedures that
Visual Studio executes internally to create objects and handle events. Figure A-10 shows
the Call Stack window demonstrating the cascading event problem discussed in the
preceding section.

Figure A-10: Call Stack window

The Call Stack window displays procedures in the order in which they were called, that
is, from the most recently called procedure to the least recently called procedure. The
lines that appear dimmed contain procedures that Visual Studio executes internally.

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 896

897

A P P E N D I X A

These procedures set up event handlers and allow Visual Studio to call the event
handlers and procedures that you create.

Figure A-10 shows that the event procedure txtCascade1_TextChanged was the
procedure most recently called. The contents of this line say that the executable file
named AppendixAConceptLesson.exe contains an executing event handler named
txtCascade1_TextChanged in the form module named frmMain. Note that any argu-
ments supplied to the event handler also appear in the Call Stack window. The Call Stack
window can be helpful to locate cascading events as it lists each event handler that Visual
Studio called.

In this exploration exercise, you will use the Call Stack window to examine cascading
events.

1. Run the solution and click the Call Stack tab. Enter the value 5 in the top text box.

2. Press F11 to fire the cascading TextChanged events. The cascading events will con-
tinue to fire until an exception is thrown.

3. On the menu bar, click Debug, Windows, Call Stack to view the Call Stack window.
The cascading events appear in the Call Stack window.

4. End the application.

In addition to locating cascading events, the Call Stack window can be used to examine
the order in which Visual Studio called the various procedures and which procedures are
executing.

THE LOCALS WINDOW
The Locals window displays the local variables pertaining to the currently executing
event handler or any other executing procedure. As one procedure calls another proce-
dure, Visual Studio updates the contents of the Locals window to display the information
pertaining to the currently executing procedure.

The Locals window can be displayed only while Visual Studio is in break mode. In addition,
the Locals window is useful only when an event handler or other procedure is executing.
Although it is possible to display the Locals window while Visual Studio is waiting for an
event handler to execute, the Locals window will display nothing. Figure A-11 shows the
Locals window while the event handler named btnTypeMismatch is executing.

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 897

898

D E B U G G I N G

As shown in Figure A-11, a reference to the form, its objects, and the form-level variables
appears in the Locals window through a reference to the Me keyword. Sender and e
provide the reference to the event handler’s arguments. As these variables are objects
supporting properties, they can be expanded and collapsed. Finally, the variables
Amount, InterestRate, Periods, and Result are the local variables declared in the event
handler. Note that if the current procedure is not an event handler, Me does not appear,
and no reference to the form exists.

Note that the Locals window has a drill-down interface. Clicking the plus sign expands
an object and clicking the minus sign collapses the object. The object supplied by the Me
keyword is hierarchical. That is, Me (the form) might contain a text box, which, in turn,
supports properties.

OTHER DEBUGGING WINDOWS
Visual Studio supplies several other debugging windows. The following list briefly
describes the purpose of these windows:

» The Autos window displays the variables and objects in the current statement and
the statements surrounding the currently executing statement.

» The Memory window displays blocks of memory in both text and hexadecimal
format.

» The Processes window is useful to debug applications that communicate with
each other.

Figure A-11: Locals window

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 898

899

A P P E N D I X A

» The Disassembly window allows you to view the intermediate language (IL) code
for the program and is generated by the Visual Basic compiler.

» The Registers window allows you to view the CPU registers and their contents.

APPENDIX SUMMARY
This appendix presented an overview of the tools that can be used to debug applications.
When and how to use these tools is up to the developer.

» To trace the execution of the statements in an application, use the Step Into, Step
Over, and Step Out buttons.

» Breakpoints cause execution to be suspended when a particular statement is
reached. Breakpoints can be set by clicking the left margin in the Code Editor. It is
possible to set several breakpoints at the same time. Just before executing the
statement containing the breakpoint, Visual Studio enters break mode, allowing
you to examine the values of variables and properties. In addition to simple break-
points, it is also possible to set hit count breakpoints and conditional breakpoints.

» The Immediate window is used to evaluate expressions while Visual Studio is in
break mode. To evaluate an expression, enter a question mark, followed by the
expression to evaluate.

» Four Watch windows allow you to examine the values of variables and expressions
while Visual Studio is in break mode. Each Watch window works the same way.

» The Call Stack window is used to examine the order in which procedures are
called. It can be useful to detect cascading events.

KEY TERMS
breakpoint—An executable statement where execution will be suspended.

cascading events—A phenomenon that occurs when one event causes another event to
fire indefinitely.

debugging—The process of locating and fixing programming errors.

debugging windows—A collection of windows supplied by the Visual Studio IDE
designed to help you correct errors in the applications you write.

logic error—A type of error that occurs when an application produces unexpected
results.

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 899

1418835463_AppendixA.qxd 5/22/06 02:32 PM Page 900

